Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CNS Neurol Disord Drug Targets ; 22(2): 180-190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34533450

RESUMO

BACKGROUND & OBJECTIVE: We have previously identified aberrant connectivity of the left precuneus, ventrolateral prefrontal cortex, anterior cingulate cortex, and anterior insula in patients with either a paranoid (schizophrenia), or a depressive syndrome (both unipolar and bipolar). In the current study, we attempted to replicate and expand these findings by including a healthy control sample and separating the patients in a depressive episode into two groups: unipolar and bipolar depression. We hypothesized that the connections between those major nodes of the resting state networks would demonstrate different patterns in the three patient groups compared to the healthy subjects. METHODS: Resting-state functional MRI was performed on a sample of 101 participants, of which 26 patients with schizophrenia (current psychotic episodes), 24 subjects with Bipolar Disorder (BD), 33 with Major Depressive Disorder (MDD) (both BD and MDD patients were in a current depressive episode), and 21 healthy controls. Spectral Dynamic Causal Modeling was used to calculate the coupling values between eight regions of interest, including the anterior precuneus (PRC), anterior hippocampus, anterior insula, angular gyrus, lateral Orbitofrontal Cortex (OFC), middle frontal gyrus, planum temporale, and anterior thalamus. RESULTS & CONCLUSION: We identified disturbed effective connectivity from the left lateral orbitofrontal cortex to the left anterior precuneus that differed significantly between unipolar depression, where the influence was inhibitory, and bipolar depression, where the effect was excitatory. A logistic regression analysis correctly classified 75% of patients with unipolar and bipolar depression based solely on the coupling values of this connection. In addition, patients with schizophrenia demonstrated negative effective connectivity from the anterior PRC to the lateral OFC, which distinguished them from healthy controls and patients with major depression. Future studies with unmedicated patients will be needed to establish the replicability of our findings.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem
2.
J Pers Med ; 11(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34834462

RESUMO

This study was conducted to examine whether there are quantitative or qualitative differences in the connectome between psychiatric patients and healthy controls and to delineate the connectome features of major depressive disorder (MDD), schizophrenia (SCZ) and bipolar disorder (BD), as well as the severity of these disorders. Toward this end, we performed an effective connectivity analysis of resting state functional MRI data in these three patient groups and healthy controls. We used spectral Dynamic Causal Modeling (spDCM), and the derived connectome features were further subjected to machine learning. The results outlined a model of five connections, which discriminated patients from controls, comprising major nodes of the limbic system (amygdala (AMY), hippocampus (HPC) and anterior cingulate cortex (ACC)), the salience network (anterior insula (AI), and the frontoparietal and dorsal attention network (middle frontal gyrus (MFG), corresponding to the dorsolateral prefrontal cortex, and frontal eye field (FEF)). Notably, the alterations in the self-inhibitory connection of the anterior insula emerged as a feature of both mood disorders and SCZ. Moreover, four out of the five connectome features that discriminate mental illness from controls are features of mood disorders (both MDD and BD), namely the MFG→FEF, HPC→FEF, AI→AMY, and MFG→AMY connections, whereas one connection is a feature of SCZ, namely the AMY→SPL connectivity. A large part of the variance in the severity of depression (31.6%) and SCZ (40.6%) was explained by connectivity features. In conclusion, dysfunctions in the self-regulation of the salience network may underpin major mental disorders, while other key connectome features shape differences between mood disorders and SCZ, and can be used as potential imaging biomarkers.

3.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502214

RESUMO

The neurodegenerative and neurodevelopmental hypotheses represent the basic etiological framework for the origin of schizophrenia. Additionally, the dopamine hypothesis, adopted more than two decades ago, has repeatedly asserted the position of dopamine as a pathobiochemical substrate through the action of psychostimulants and neuroleptics on the mesolimbic and mesocortical systems, giving insight into the origin of positive and negative schizophrenic symptoms. Meanwhile, cognitive impairments in schizophrenia remain incompletely understood but are thought to be present during all stages of the disease, as well as in the prodromal, interictal and residual phases. On the other hand, observations on the effects of NMDA antagonists, such as ketamine and phencyclidine, reveal that hypoglutamatergic neurotransmission causes not only positive and negative but also cognitive schizophrenic symptoms. This review aims to summarize the different hypotheses about the origin of psychoses and to identify the optimal neuroimaging method that can serve to unite them in an integral etiological framework. We systematically searched Google scholar (with no concern to the date published) to identify studies investigating the etiology of schizophrenia, with a focus on impaired central neurotransmission. The complex interaction between the dopamine and glutamate neurotransmitter systems provides the long-needed etiological concept, which combines the neurodegenerative hypothesis with the hypothesis of impaired neurodevelopment in schizophrenia. Pharmaco-magnetic resonance imaging is a neuroimaging method that can provide a translation of scientific knowledge about the neural networks and the disruptions in and between different brain regions, into clinically applicable and effective therapeutic results in the management of severe psychotic disorders.


Assuntos
Antipsicóticos/farmacologia , Biomarcadores/análise , Encéfalo/patologia , Espectroscopia de Ressonância Magnética/métodos , Transtornos Psicóticos/patologia , Animais , Encéfalo/efeitos dos fármacos , Humanos , Transtornos Psicóticos/tratamento farmacológico
4.
Curr Top Med Chem ; 21(11): 949-963, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34355686

RESUMO

Major Depressive Disorder (MDD) and Bipolar Disorder (BD) have a high prevalence and detrimental socio-economic consequences for the patients and the community. Furthermore, the depressive symptomatology of both disorders is essentially identical, thus rendering the clinical differential diagnosis between the two significantly more difficult considering the concomitant lack of objective biomarkers. Mood disorders are multifactorial disorders the pathophysiology of which includes genetic, epigenetic, neurobiological, neuroimmunological, structural and functional brain alterations, etc. Aberrant genetic variants as well as changed differential expression of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been implicated in the pathophysiology of MDD and BD. MiRNAs as well as lncRNAs have regulatory and modulating functions on protein-- coding gene expression thus influencing the remodeling of the architecture, neurotransmission, immunomodulation, etc. in the Central Nervous System (CNS) which are essential in the development of psychiatric disorders including MDD and BD. Moreover, both shared and distinct structural, connectivity, task-related and metabolic features have been observed via functional magnetic resonance imaging and magnetic resonance spectroscopy, suggesting the possibility of a dimensional continuum between the two disorders instead of a categorical differentiation. Aberrant connectivity within and between the Default Mode Network, the Salience Network, Executive Network, etc. as well as dysfunctional emotion, cognitive and executive processing have been associated with mood disorders. Therefore, the aim of this review is to explore a more multidimensional framework in the scientific research of mood disorders, including epigenetic and neuroimaging data in order to shape an outline for their translational capacity in clinical practice.


Assuntos
Biomarcadores/análise , Imageamento por Ressonância Magnética/métodos , Transtornos do Humor/diagnóstico , RNA não Traduzido/análise , Biomarcadores/metabolismo , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/genética , Transtorno Bipolar/fisiopatologia , Encéfalo/fisiopatologia , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/fisiopatologia , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , MicroRNAs/análise , MicroRNAs/metabolismo , Transtornos do Humor/genética , Transtornos do Humor/fisiopatologia , RNA não Traduzido/metabolismo
5.
World J Psychiatry ; 11(5): 169-180, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34046313

RESUMO

Traditional therapeutic methods in psychiatry, such as psychopharmacology and psychotherapy help many people suffering from mental disorders, but in the long-term prove to be effective in a relatively small proportion of those affected. Therapeutically, resistant forms of mental disorders such as schizophrenia, major depressive disorder, and bipolar disorder lead to persistent distress and dysfunction in personal, social, and professional aspects. In an effort to address these problems, the translational approach in neuroscience has initiated the inclusion of novel or modified unconventional diagnostic and therapeutic techniques with promising results. For instance, neuroimaging data sets from multiple modalities provide insight into the nature of pathophysiological mechanisms such as disruptions of connectivity, integration, and segregation of neural networks, focusing on the treatment of mental disorders through instrumental biomedical methods such as electro-convulsive therapy (ECT), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS) and deep brain stimulation (DBS). These methodologies have yielded promising results that have yet to be understood and improved to enhance the prognosis of the severe and persistent psychotic and affective disorders. The current review is focused on the translational approach in the management of schizophrenia and mood disorders, as well as the adaptation of new transdisciplinary diagnostic tools such as neuroimaging with concurrently administered psychopathological questionnaires and integration of the results into the therapeutic framework using various advanced instrumental biomedical tools such as ECT, TMS, tDCS and DBS.

6.
Curr Pharm Des ; 27(39): 4039-4048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33823771

RESUMO

Psychoses and affective disorders are severe mental illnesses with a considerable negative effect on an individual and global scale. They are among the most damaging and socially significant diseases, which contribute to permanent disabilities for the patients. The aim of this review is to analyse the capacity of neuroscientific methods as tools to reform psychiatry into a biologically valid medical discipline. Furthermore, it will focus on the application of the translational approach towards the diagnostic and therapeutic processes, as well as monitoring of treatment response by using valid biomarkers and psychometric instruments. By combining translational neuroscience with the latest psychopharmacology advances, clinicians might be able to provide better quality of precision and individualized medical care for their patients. We visualise a reality in which neuroimaging methods will modify the standard clinical evaluation of neuropsychiatric disorders, leading to a biologically valid diagnosis, monitoring and treatment in everyday clinical practice.


Assuntos
Transtornos Mentais , Transtornos Psicóticos , Biomarcadores , Humanos , Transtornos Mentais/diagnóstico , Transtornos Mentais/tratamento farmacológico , Transtornos do Humor/diagnóstico , Transtornos do Humor/tratamento farmacológico , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/tratamento farmacológico , Autoavaliação (Psicologia)
7.
Diagnostics (Basel) ; 11(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33435624

RESUMO

We constructed a novel design integrating the administration of a clinical self-assessment scale with simultaneous acquisition of functional Magnetic Resonance Imaging (fMRI), aiming at cross-validation between psychopathology evaluation and neuroimaging techniques. We hypothesized that areas demonstrating differential activation in two groups of patients (the first group exhibiting paranoid delusions in the context of paranoid schizophrenia-SCH-and second group with a depressive episode in the context of major depressive disorder or bipolar disorder-DEP) will have distinct connectivity patterns and structural differences. Fifty-one patients with SCH (n = 25) or DEP (n = 26) were scanned with three different MRI sequences: a structural and two functional sequences-resting-state and task-related fMRI (the stimuli represent items from a paranoid-depressive self-evaluation scale). While no significant differences were found in gray matter volumes, we were able to discriminate between the two clinical entities by identifying two significant clusters of activations in the SCH group-the left Precuneus (PreCu) extending to the left Posterior Cingulate Cortex (PCC) and the right Angular Gyrus (AG). Additionally, the effective connectivity of the middle frontal gyrus (MFG), a part of the Dorsolateral Prefrontal Cortex (DLPFC) to the Anterior Insula (AI), demonstrated a significant difference between the two groups with inhibitory connection demonstrated only in SCH. The observed activations of PreCu, PCC, and AG (involved in the Default Mode Network DMN) might be indirect evidence of the inhibitory connection from the DLPFC to AI, interfering with the balancing function of the insula as the dynamic switch in the DMN. The findings of our current study might suggest that the connectivity from DLPFC to the anterior insula can be interpreted as evidence for the presence of an aberrant network that leads to behavioral abnormalities, the manifestation of which depends on the direction of influence. The reduced effective connectivity from the AI to the DLPFC is manifested as depressive symptoms, and the inhibitory effect from the DLPFC to the AI is reflected in the paranoid symptoms of schizophrenia.

8.
World J Psychiatry ; 11(12): 1274-1287, 2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-35070777

RESUMO

BACKGROUND: Over the past decade, resting-state functional magnetic resonance imaging (rs-fMRI) has concentrated on brain networks such as the default mode network (DMN), the salience network (SN), and the central executive network (CEN), allowing for a better understanding of cognitive deficits observed in mental disorders, as well as other characteristic psychopathological phenomena such as thought and behavior disorganization. AIM: To investigate differential patterns of effective connectivity across distributed brain networks involved in schizophrenia (SCH) and mood disorders. METHODS: The sample comprised 58 patients with either paranoid syndrome in the context of SCH (n = 26) or depressive syndrome (Ds) (n = 32), in the context of major depressive disorder or bipolar disorder. The methods used include rs-fMRI and subsequent dynamic causal modeling to determine the direction and strength of connections to and from various nodes in the DMN, SN and CEN. RESULTS: A significant excitatory connection from the dorsal anterior cingulate cortex to the anterior insula (aI) was observed in the SCH patient group, whereas inhibitory connections from the precuneus to the ventrolateral prefrontal cortex and from the aI to the precuneus were observed in the Ds group. CONCLUSION: The results delineate specific patterns associated with SCH and Ds and offer a better explanation of the underlying mechanisms of these disorders, and inform differential diagnosis and precise treatment targeting.

9.
Diagnostics (Basel) ; 11(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374207

RESUMO

Traditional psychiatric diagnosis has been overly reliant on either self-reported measures (introspection) or clinical rating scales (interviews). This produced the so-called explanatory gap with the bio-medical disciplines, such as neuroscience, which are supposed to deliver biological explanations of disease. In that context the neuro-biological and clinical assessment in psychiatry remained discrepant and incommensurable under conventional statistical frameworks. The emerging field of translational neuroimaging attempted to bridge the explanatory gap by means of simultaneous application of clinical assessment tools and functional magnetic resonance imaging, which also turned out to be problematic when analyzed with standard statistical methods. In order to overcome this problem our group designed a novel machine learning technique, multivariate linear method (MLM) which can capture convergent data from voxel-based morphometry, functional resting state and task-related neuroimaging and the relevant clinical measures. In this paper we report results from convergent cross-validation of biological signatures of disease in a sample of patients with schizophrenia as compared to depression. Our model provides evidence that the combination of the neuroimaging and clinical data in MLM analysis can inform the differential diagnosis in terms of incremental validity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...